29 research outputs found

    Quantitative testing

    Get PDF
    We investigate the problem of specification based testing with dense sets of inputs and outputs, in particular with imprecision as they might occur due to errors in measurements, numerical instability or noisy channels. Using quantitative transition systems to describe implementations and specifications, we introduce implementation relations that capture a notion of correctness “up to ε”, allowing deviations of implementation from the specification of at most ε. These quantitative implementation relations are described as Hausdorff distances between certain sets of traces. They are conservative extensions of the well-known ioco relation. We develop an on-line and an off-line algorithm to generate test cases from a requirement specification, modeled as a quantitative transition system. Both algorithms are shown to be sound and complete with respect to the quantitative implementation relations introduced

    Are You Still There? - A Lightweight Algorithm to Monitor Node Presence in Self-Configuring Networks

    Get PDF
    This paper is concerned with the analysis and redesign of a distributed algorithm to monitor the availability of nodes in self-configuring networks. The simple scheme to regularly probe a node ¿ "are you still there?" ¿ may easily lead to over- or underloading. The essence of the algorithm is therefore to automatically adapt the probing frequency. We show that a self-adaptive scheme to control the probe load, originally proposed as an extension to the UPnPTM (Universal Plug and Play) standard, leads to an unfair treatment of nodes: some nodes probe fast while others almost starve. An alternative distributed algorithm is proposed that overcomes this problem and that tolerates highly dynamic network topology changes. The algorithm is very simple and can be implemented on large networks of small computing devices such as mobile phones, PDAs, and so on

    Embedded software analysis with MOTOR

    Get PDF

    Towards a theory of holistic clustering

    Get PDF
    In this note, cluster theory is presented from a rather abstract point of view, basic known results are reviewed from this view point, and some new results which motivated the proposed approach, as well as some new problems which naturally arise in this context, are presented

    Comparative effects of oleoyl-estrone and a specific β3-adrenergic agonist (CL316, 243) on the expression of genes involved in energy metabolism of rat white adipose tissue

    Get PDF
    Background: The combination of oleoyl-estrone (OE) and a selective b3-adrenergic agonist (B3A; CL316,243) treatment in rats results in a profound and rapid wasting of body reserves (lipid). Methods: In the present study we investigated the effect of OE (oral gavage) and/or B3A (subcutaneous constant infusion) administration for 10 days to overweight male rats, compared with controls, on three distinct white adipose tissue (WAT) sites: subcutaneous inguinal, retroperitoneal and epididymal. Tissue weight, DNA (and, from these values cellularity), cAMP content and the expression of several key energy handling metabolism and control genes were analyzed and computed in relation to the whole site mass. Results: Both OE and B3A significantly decreased WAT mass, with no loss of DNA (cell numbers). OE decreased and B3A increased cAMP. Gene expression patterns were markedly different for OE and B3A. OE tended to decrease expression of most genes studied, with no changes (versus controls) of lipolytic but decrease of lipogenic enzyme genes. The effects of B3A were widely different, with a generalized increase in the expression of most genes, including the adrenergic receptors, and, especially the uncoupling protein UCP1. Discussion: OE and B3A, elicit widely different responses in WAT gene expression, end producing similar effects, such as shrinking of WAT, loss of fat, maintenance of cell numbers. OE acted essentially on the balance of lipolysislipogenesis and the blocking of the uptake of substrates; its decrease of synthesis favouring lipolysis. B3A induced a shotgun increase in the expression of most regulatory systems in the adipocyte, an effect that in the end favoured again the loss of lipid; this barely selective increase probably produces inefficiency, which coupled with the increase in UCP1 expression may help WAT to waste energy through thermogenesis. Conclusions: There were considerable differences in the responses of the three WAT sites. OE in general lowered gene expression and stealthily induced a substrate imbalance. B3A increasing the expression of most genes enhanced energy waste through inefficiency rather than through specific pathway activation. There was not a synergistic effect between OE and B3A in WAT, but their combined action increased WAT energy waste

    MoDeST: a compositional modeling formalism for hard and softly timed systems

    Get PDF
    This paper presents Modest (MOdeling and DEscription language for Stochastic Timed systems), a formalism that is aimed to support (i) the modular description of reactive system's behaviour while covering both (ii) functional and (iii) nonfunctional system aspects such as timing and quality-of-service constraints in a single specification. The language contains features such as simple and structured data types, structuring mechanisms like parallel composition and abstraction, means to control the granularity of assignments, exception handling, and non-deterministic and random branching and timing. Modest can be viewed as an overarching notation for a wide spectrum of models, ranging from labeled transition systems, to timed automata (and probabilistic variants thereof) as well as prominent stochastic processes such as (generalized semi-)Markov chains and decision processes. The paper describes the design rationales and details of the syntax and semantics

    Bond and shear mechanics within reinforced concrete beam-column joints incorporating the slotted beam detail

    Get PDF
    The recent earthquakes in Christchurch have made it clear that issues exist with current RC frame design in New Zealand. In particular, beam elongation in RC frame buildings was widespread and resulted in numerous buildings being rendered irreparable. Design solutions to overcome this problem are clearly needed, and the slotted beam is one such solution. This system has a distinct advantage over other damage avoidance design systems in that it can be constructed using current industry techniques and conventional reinforcing steel. As the name suggests, the slotted beam incorporates a vertical slot along part of the beam depth at the beam-column interface. Geometric beam elongation is accommodated via opening and closing of these slots during seismically induced rotations, while the top concrete hinge is heavily reinforced to prevent material inelastic elongation. Past research on slotted beams has shown that the bond demand on the bottom longitudinal reinforcement is increased compared with equivalent monolithic systems. Satisfying this increased bond demand through conventional means may yield impractical and economically less viable column dimensions. The same research also indicated that the joint shear mechanism was different to that observed within monolithic joints and that additional horizontal reinforcement was required as a result. Through a combination of theoretical investigation, forensic analysis, and database study, this research addresses the above issues and develops design guidelines. The use of supplementary vertical joint stirrups was investigated as a means of improving bond performance without the need for non-standard reinforcing steel or other hardware. These design guidelines were then validated experimentally with the testing of two 80% scale beam-column sub-assemblies. The revised provisions for bond within the bottom longitudinal reinforcement were found to be adequate while the top longitudinal reinforcement remained nominally elastic throughout both tests. An alternate mechanism was found to govern joint shear behaviour, removing the need for additional horizontal joint reinforcement. Current NZS3101:2006 joint shear reinforcement provisions were found to be more than adequate given the typically larger column depths required rendering the strut mechanism more effective. The test results were then used to further refine design recommendations for practicing engineers. Finally, conclusions and future research requirements were outlined

    Model-Based Testing of Safety Critical Real-Time Control Logic Software

    Full text link
    The paper presents the experience of the authors in model based testing of safety critical real-time control logic software. It describes specifics of the corresponding industrial settings and discusses technical details of usage of UniTESK model based testing technology in these settings. Finally, we discuss possible future directions of safety critical software development processes and a place of model based testing techniques in it.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Compositional solution of stochastic process algebra models

    Get PDF
    This dissertation is about the solution of Markovian stochastic process algebra (SPA) models and the avoidance of the state-space explosion problem. We try to answer the question whether the compositionality of SPA models can be exploited to overcome the largeness problems appearing when evaluating such models. First, instead of a global view, we take up a local view, i.e. we focus on components of SPA models, and derive some general results about the relation between components. We identify waiting times, throughputs, and branching probabilities as the three quantities that should be known for a compositional performance evaluation strategy. Then, we consider a special class of SPA processes that describe semi-Markov processes. SPA processes in this class are suitable to be solved by a very efficient new technique. An important step in applying this technique is the computation of the mean value of the maximum of phase-type distributed random variables. A naive approach for a computation would require exponential space, but we present an efficient algorithm of polynomial complexity in time and space in the number of considered random variables. Finally, we consider a true-concurrency semantics for SPA models and investigate its use for an efficient solution of SPA models. We identify three important quantities to express performance measures in this semantics. Unfortunately, as we will show, only for very restricted cases the true-concurrency-view on SPA models allows the actual computation of measures
    corecore